An iterative speech model-based a priori SNR estimator
نویسندگان
چکیده
In this contribution we propose an a priori signal-to-noise ratio (SNR) estimator based on a probabilistic speech model. Since the a priori SNR is an important means for speech enhancement algorithms, such as weighting rule calculation for noise reduction or speech presence probability computation, its diligent estimation is of wide interest. As a basis for this estimator a Gaussian mixture model (GMM) is trained on clean speech amplitudes and by finding the maximum likelihood (ML) clean speech estimate of the corresponding observed frame the a priori SNR can easily be calculated. Additionally, an iterative scheme is applied to consequently enhance the estimate by repetitively evaluating the GMM. This technique allows to accomplish noise reduction free of musical tones even in nonstationary noise environments and exceeds the quality of the classical decision-directed (DD) approach for typical spectral weighting rules.
منابع مشابه
A Priori SNR Estimation Using Weibull Mixture Model
This contribution introduces a novel causal a priori signalto-noise ratio (SNR) estimator for single-channel speech enhancement. To exploit the advantages of the generalized spectral subtraction, a normalized α-order magnitude (NAOM) domain is introduced where an a priori SNR estimation is carried out. In this domain, the NAOM coefficients of noise and clean speech signals are modeled by a Weib...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملSpeech enhancement using super-Gaussian speech models and noncausal a priori SNR estimation
Existing supergaussian speech models in the short-time Fourier transform domain are based on the assumption that distinct spectral components are statistically independent. The corresponding minimum mean-square error (MMSE) spectral estimators require an estimator for the a priori SNR. Unfortunately, the latter is often obtained by the decision-directed approach of Ephraim and Malah, which reli...
متن کاملA Novel Approach to a Robust a Priori SNR Estimator in Speech Enhancement
This paper presents a novel approach to single channel speech enhancement in noisy environments. Widely adopted noise reduction techniques based on the spectral subtraction are generally expressed as a spectral gain depending on the signal-to-noise ratio (SNR) [1]–[4]. As the estimation method of the SNR, the well-known decision-directed (DD) estimator of Ephraim and Malah efficiently is known ...
متن کاملReducing over- and under-estimation of the a priori SNR in speech enhancement techniques
a r t i c l e i n f o a b s t r a c t A priori SNR A posteriori SNR SNR cells Spectral distortion Most speech enhancement methods based on short-time spectral modification are generally expressed as a spectral gain depending on the estimate of the local signal-to-noise ratio (SNR) on each frequency bin. Several studies have analyzed the performance of a priori SNR estimation algorithms to impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015